CD154 Blockade Alters Innate Immune Cell Recruitment and Programs Alloreactive CD8+ T Cells into KLRG-1high Short-Lived Effector T Cells
نویسندگان
چکیده
CD154/CD40 blockade combined with donor specific transfusion remains one of the most effective therapies in prolonging allograft survival. Despite this, the mechanisms by which these pathways synergize to prevent rejection are not completely understood. Utilizing a BALB/c (H2-K(d)) to B6 (H2-K(b)) fully allogeneic skin transplant model system, we performed a detailed longitudinal analysis of the kinetics and magnitude of CD8(+) T cell expansion and differentiation in the presence of CD154/CD40 pathway blockade. Results demonstrated that treatment with anti-CD154 vs. DST had distinct and opposing effects on activated CD44(high) CD62L(low) CD8(+) T cells in skin graft recipients. Specifically, CD154 blockade delayed alloreactive CD8(+) T cell responses, while DST accelerated them. DST inhibited the differentiation of alloreactive CD8(+) T cells into multi-cytokine producing effectors, while CD40/CD154 blockade led to the diminution of the KLRG-1(low) long-lived memory precursor population compared with either untreated or DST treated animals. Moreover, only CD154 blockade effectively inhibited CXCL1 expression and neutrophil recruitment into the graft. When combined, anti-CD154 and DST acted synergistically to profoundly diminish the absolute number of IFN-γ producing alloreactive CD8(+) T cells, and intra-graft expression of inflammatory chemokines. These findings demonstrate that the previously described ability of anti-CD154 and DST to result in alloreactive T cell deletion involves both delayed kinetics of T cell expansion and differentiation and inhibited development of KLRG-1(low) memory precursor cells.
منابع مشابه
Critical role of CD4 help in CD154 blockade-resistant memory CD8 T cell activation and allograft rejection in sensitized recipients.
Allograft rejection in sensitized recipients remains the major problem in clinical organ transplantation. We have developed a donor-type skin-sensitized mouse cardiac allograft model (BALB/c-->C57BL/6) in which both rejection (<5 days) and alloreactive CD8 activation are resistant to CD154 blockade. First, we attempted to elucidate why CD154 blockade fails to protect cardiac grafts in sensitize...
متن کاملDefective alloreactive CD8 T cell function and memory response in allograft recipients in the absence of CD4 help.
We have shown that alloreactive CD8 T cell activation may proceed via CD4-dependent and CD4-independent pathways, and that CD8 T cell activation in Ag-primed animals is independent of CD154 costimulation. In this report, we further analyzed the activation and function of alloreactive CD8 CTL effectors in CD4 knockout (KO) skin/cardiac allograft recipients. FACS analysis showed that alloreactive...
متن کاملActivation of alloreactive CD8+ T cells operates via CD4-dependent and CD4-independent mechanisms and is CD154 blockade sensitive.
CD154, one of the most extensively studied T cell costimulation molecules, represents a promising therapeutic target in organ transplantation. However, the immunological mechanisms of CD154 blockade that result in allograft protection, particularly in the context of alloreactive CD4/CD8 T cell activation, remain to be elucidated. We now report on the profound inhibition of alloreactive CD8(+) T...
متن کاملAllograft rejection by primed/memory CD8+ T cells is CD154 blockade resistant: therapeutic implications for sensitized transplant recipients.
We have shown that CD8(+) CTLs are the key mediators of accelerated rejection, and that CD8(+) T cells represent the prime targets of CD154 blockade in sensitized mouse recipients of cardiac allografts. However, the current protocols require CD154 blockade at the time of sensitization, whereas delayed treatment fails to affect graft rejection in sensitized recipients. To elucidate the mechanism...
متن کاملAnalysis of the underlying cellular mechanisms of anti-CD154-induced graft tolerance: the interplay of clonal anergy and immune regulation.
Although it has been shown that CD4(+)CD25(+) regulatory T cells (T(reg)) contribute to long-term graft acceptance, their impact on the effector compartment and the mechanism by which they exert suppression in vivo remain unresolved. Using a CD4(+) TCR transgenic model for graft tolerance, we have unveiled the independent contributions of anergy and active suppression to the fate of immune and ...
متن کامل